Topological spaces associated to higher-rank graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological spaces associated to higher-rank graphs

We investigate which topological spaces can be constructed as topological realisations of higher-rank graphs. We describe equivalence relations on higher-rank graphs for which the quotient is again a higher-rank graph, and show that identifying isomorphic co-hereditary subgraphs in a disjoint union of two rank-k graphs gives rise to pullbacks of the associated C∗algebras. We describe a combinat...

متن کامل

Simplicity of C-algebras Associated to Higher-rank Graphs

We prove that if Λ is a row-finite k-graph with no sources, then the associated C∗-algebra is simple if and only if Λ is cofinal and satisfies Kumjian and Pask’s Condition (A). We prove that Condition (A) is equivalent to a suitably modified version of Robertson and Steger’s original nonperiodicity condition (H3) which in particular involves only finite paths. We also characterise both cofinali...

متن کامل

Actions of Z Associated to Higher Rank Graphs

An action of Zk is associated to a higher rank graph Λ satisfying a mild assumption. This generalises the construction of a topological Markov shift arising from a nonnegative integer matrix. We show that the stable Ruelle algebra of Λ is strongly Morita equivalent to C∗(Λ). Hence, if Λ satisfies the aperiodicity condition, the stable Ruelle algebra is simple, stable and purely infinite.

متن کامل

Real Rank and Topological Dimension of Higher Rank Graph Algebras

We study dimension theory for the C∗-algebras of row-finite k-graphs with no sources. We establish that strong aperiodicity—the higher-rank analogue of condition (K)—for a k-graph is necessary and sufficient for the associated C∗-algebra to have topological dimension zero. We prove that a purely infinite 2-graph algebra has real-rank zero if and only if it has topological dimension zero and sat...

متن کامل

Higher rank Einstein solvmanifolds

In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2016

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2016.04.005